martes, 24 de marzo de 2009

Mantenimiento y reparacion de un equipo de computo CBTis Nº 240
















UNIDADES OPTICAS

Una lectora de CD es un dispositivo electrónico que permite la lectura de estos mediante el empleo de un haz de un rayo láser y la posterior transformación de estos en impulsos eléctricos que la computadora interpreta; escritos por grabadoras de CD (a menudo llamadas "quemadoras") -dispositivo similar a la lectora CD, con la diferencia que hace lo contrario a la lectura, es decir, transformar impulsos eléctricos en un haz de luz láser que almacenan en el CD datos binarios en forma de pozos y llanos-. Los lectores CD ——ahora casi universalmente usados en las computadoras—— puede ser conectado a la computadora por la interfaz IDE (ATA), por una interfaz SCSI o una interfaz propietaria, como la interfaz de Panasonic. La mayoría de los lectores de CD pueden también leer CD de audio (CDA) y CD de vídeo (VCD) con el software apropiado.
Los pozos tienen una anchura de 0,6 micras, mientras que su profundidad (respecto a los llanos) se reduce a 0,12 micras. La longitud de pozos y llanos está entre las 0,9 y las 3,3 micras. Entre una revolución de la espiral y las adyacentes hay una distancia aproximada de 1,6 micras (lo que hace cerca de 20 caquitas por centímetro).
Es creencia muy común el pensar que un pozo corresponde a un valor binario y un llano al otro valor. Sin embargo, esto no es así, sino que los valores binarios son detectados por las transiciones de pozo a llano, y viceversa: una transición determina un 1 binario, mientras que la longitud de un pozo o un llano indica el número consecutivo de 0 binarios.


Duración
Los datos almacenados en un CD-ROM se mantienen inalterables durante un periodo de entre 10 y 50 años en función de la tecnología de grabación utilizada y las condiciones de conservación. La duración de los datos depende de las variaciones de temperatura y de la exposición a la luz del sol. Para una duración optima de los datos se recomienda mantener los CD-ROM a una temperatura constante de 20 grados y en total ausencia de radiación solar.


CD-ROM son las siglas de Compact Disc Read-Only Memory o disco compacto con memoria de solo lectura. Es un medio de almacenamiento masivo de datos que usa un láser óptico para la lectura de unos relieves microscópicos que están estampados en la superficie de un disco de aluminio recubierto de policarbonato.
Las unidades de CD-ROM se evalúan por su capacidad y su velocidad de lectura. Existen discos de varias capacidades, que van desde los 650 Mb y 74 min. a los 1054 Mb y 120 min. En lo que se refiere a la velocidad, una unidad de velocidad simple (1X) lee a 150kb por segundo, una de velocidad doble (2X) lee a 300kb/s y así sucesivamente. El límite de lectura/escritura es de 52X (7800 kb/s).
Tipos: Existen distintos tipos de CD, cada uno de ellos tiene unas características distintas, que a continuación explicaremos:
• CD Audio: Para escuchar los clásicos discos compactos de música.
• Video-CD: Para películas grabadas en este formato
• CD-i: Es una variante de disco óptico, exclusivamente de lectura que contiene sonido e imagen además de datos.
• Photo-CD multisesión: Para guardar imágenes procedentes de un carrete fotográfico o una memoria de una cámara digital.
• CD-XA y CD-XA Entrelazado: CD's que contienen archivos de audio y datos.
• CD-R: Los discos grabables, están compuestos por un soporte plástico rígido (policarbonato), al que se adosa una capa de material sensible y otra capa reflectante. La estructura de los discos CD-R es la siguiente:
• Capa para Impresión
• Capa material reflectante
• Capa metálica fotosensible
• Capa de material plástico (Policarbonato)

En el proceso de grabación, el láser que actúa sobre el disco a una determinada frecuencia, distinta a la de lectura, incide sobre la capa fotosensible y modifica las características de la misma quemándola (grabándola) y quedando de esta manera grabada la información en forma de marcas que se corresponden con los valores 0 y 1 y que se organizan en una espiral a lo largo del disco.
Tras este proceso de quemado, el láser que actúa bajo una frecuencia de lectura, no es capaz de atravesar la capa fotosensible lo que permite que un disco CD-R pueda ser leído en todos los dispositivos de sólo lectura actuales.
Una vez alterada, la capa fotosensible no puede volver a su estado natural, por lo que el CD-R puede ser grabado una sola vez
• CD-RW: son una evolución sobre los CD-R. La diferencia estriba en el cambio de la capa fotosensible, de características tan especiales que el proceso normal de quemado lo efectúa como el CD-R, pero si posteriormente a la grabación se somete a un nuevo quemado, a una temperatura superior a la establecida para la grabación, el material fotosensible es capaz de volver a su estado original quedando listo para una nueva grabación. Para poder llevar a cabo este proceso, los actuales lectores de CD-ROM llevan incorporados un láser que es capaz de operar a dos frecuencias distintas .

Funcionamiento:Las unidades CD y DVD tienen grabada en su superficie una serie de agujeros diminutos llamados Pits que tienen una longitud variable, aunque el mínimo es de 0,83 micrómetros en CD-ROM y 0,4 en DVD, y una distancia entre Pits de 1,6 micrómetros en CD-ROM y 0,76 en DVD. El espacio intermedio entre dos Pits se denomina Land. En la siguiente imagen podemos ver las diferencias en el tamaño de pits y lands entre DVD's y CD's

En un CD o DVD, la información está almacenada digitalmente, codificada mediante unos y ceros. Un Pit está delimitado por unos, es decir, el principio y el final de un Pit es un uno, y su longitud está determinada por el número de ceros que contiene. El espacio entre PITS, denominado Land, representa solamente ceros y el número de estos depende de la longitud del Land.


El láser al pasar por la superficie del disco, se refleja con diferente intensidad dependiendo de si pasa por un Pit o por un Land, quedando este reflejo registrado por un detector fotoeléctrico. La intensidad de la luz reflejada es menor cuando el láser pasa por un Pit, y mayor cuando lo hace por un Land. Estos cambios de intensidad (determinados por el principio y el final de un Pit, o dicho de otra manera, el paso de un Pit a un Land y de un Land a un Pit) permiten reconocer la información contenida en el CD, ya que al producirse un cambio en la intensidad de la luz reflejada tenemos un 1, y el tiempo que dure este cambio de intensidad, se corresponde con el número de ceros que siguen a ese 1 .
En informática se usan los siguientes tipos de discos ópticos, tratados luego en detalle:
1. Grabado masivamente por el fabricante, para ser sólo leídos: como lo son el CD ROM (Disco compacto de sólo lectura) y el DVD ROM (Digital Versatil Disc de sólo lectura). En éstos, a partir de un disco "master" grabado con luz láser, se realizan múltiples copias obtenidas por inyección de material (sin usar láser). Se obtienen así discos con una fina capa de aluminio reflectante -entre dos capas transparentes protectoras-. Dicha capa guarda en una cara unos y ceros como surcos discontinuos (figura 2.33), que forman una sola pista en espiral. La espiral es leída con luz láser por la unidad de CD del usuario.2. Grabable una sola vez por el usuario: el CD-R (CD Recordable) antes llamado CD-WO (Write once) En la escritura, el haz láser sigue una pista en espiral pre-construida en una capa de pigrnento. Donde el haz incide, su calor decolora para siempre el punto de incidencia. En la lectura, esta capa deja pasar el haz láser hacia la capa reflectora dorada que está más arriba, reflejándose de forma distinta según que el haz haya atravesado un punto decolorado o no, detectándose así unos y ceros. Ambas capas están protegidas por dos capas transparentes. Una vez escrito, un CD-R puede leerse como un CD-ROM.ESTE SOLO SE BA A GRABAR UNA SOLA VEZ.
3. Borrables-regrabables: En la tecnología de grabación magneto-óptico (MO), la luz láser calienta puntos (que serán unos) de una capa -previamente magnetizada uniformemente- para que pierdan su magnetismo original (este corresponde a ceros). Al mismo tiempo, un campo magnético aplicado produce sólo en dichos puntos una magnetización contraria a la originaria (para así grabar unos).Estas diferencias puntuales de magnetización son detectadas en la lectura por la luz láser (con menos potencia), dado que provocan distinta polarización de la luz láser que reflejan. Otro tipo de CD ópticos re-escribibles son los CD-E (CD-Erasable), hoy designados CD-RW (CD ReWritable), con escritura "por cambio de fase" (de cristalina a amorfa o viceversa) de los puntos de la capa del disco que guarda los datos. Se trata de una tecnología puramente óptica, sin magnetismo, que requiere una sola pasada para escribir una porción o la pista en espiral completa. En la tecnología PD (Phase change/Dual) que también es por cambio de fase, la unidad escribe pistas concéntricas. "Dual" indica que la unidad también puede leer CD con pistas en espiral (CD-ROM, CD-R, CD-RW).Si bien los CD-ROM son los CD más usados para almacenar programas y datos, las unidades lectoras de CD actuales también permiten leer información digital de otros tipos de CD basados en la misma tecnología, con vistas a aplicaciones en multimedia, a este proceso se le llama regrabable por que se puede sobre escribir informacion en un cd-rom o yasea dvd-rw.
CD-ROM
La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han convertido en el estándar para distribuir sistemas operativos, aplicaciones, etc.
El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.
Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando nuevamente el botón, la bandeja se introduce.
En estas unidades, además, existe una toma para auriculares, y también pueder estar presentes los controles de navegación y de volumen típicos de los equipos de audio para saltar de una pista a otra, por ejemplo.
Una característica básica de las unidades de CD-ROM es la velocidad de lectura que normalmente se expresa como un número seguido de una «x» (40x, 52x,..). Este número indica la velocidad de lectura en múltiplos de 128 kB/s. Así, una unidad de 52x lee información de 128 kB/s × 52 = 6,656 kB/s, es decir, a 6,5 MB/s.
Unidad de CD-RW (Regrabadora) o "Grabadora"
Las unidades de CD-ROM son sólo de lectura. Es decir, pueden leer la información en un disco, pero no pueden escribir datos en él.
Una regrabadora (CD-RW) puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En discos regrabables es normalmente menor que en los discos grabables una sola vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 MB o más tamaño (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).

Los lectores DVD-ROM también utilizan el valor X, pero su valor es distinto al de las unidades CD-ROM. En este caso el factor 1x ronda los 1350 Kb/sg. Por tanto, los lectores DVD 16x, lo más rápidos, leen a una velocidad aproximada de 21600 Kb/sg.
Características:
En los DVD pueden existir hasta dos capas por cada una de las caras del disco, organizadas en dos alturas diferentes. Una de ellas, la capa base, es de un material plateado y totalmente reflexivo que permite reflejar toda la luz del láser que incida sobre ella. La capa que se monta sobre la base, lógicamente separada por un material aislante, es semireflexiva, lo que permitirá pasar algo de luz. Por lo tanto, para poder leer la capa interna, es necesario aumentar la potencia del láser, de manera que atraviese la primera capa que queda desenfocada, con lo que la luz es reflejada por la capa más interna, pudiéndose así leer la información contenida en ella. En realidad, físicamente se podrían conseguir más capas de almacenamiento dentro de una misma cara, pero por razones de convenio se ha adoptado dos capas por cara. Esto hace que se puedan almacenar hasta nueve horas de vídeo en alta definición. Además, se soportan múltiples pistas de audio con varios canales cada una.


TIPOS DE DISCOS Y CAPACIDADES DE LOS MISMOS
Hay dos tipos de discos principalmente, que son los DVD+ y los DVD-. Cada uno de estos tipos cuenta con sus correspondientes versiones de discos grabables (R) y regrabables (RW).
Los DVD+ tienen un mejor tiempo de acceso, posicionamiento y rendimiento en general, aunque almacenan una menor cantidad de datos que los discos DVD-.
Estos cuatro tipos pueden dividirse a su vez en dos grupos, según tengan una o dos capas:
Una capa
• Una cara: DVD 5 = 4.7 Gb / 133 min.
• Doble cara: DVD 9 = 8.5 Gb / 266 min.
Doble capa
• Una cara: DVD 10 = 9.4 Gb / 266 min.
• Doble cara: DVD 18 = 17 Gb / 481 min.
Aparte de estos formatos que son los más estandarizados, existen los DVD-RAM, que vienen en un cartucho de plástico debido a que son mucho más delicados que los DVD normales, aunque tienen la ventaja de que su vida útil es 100 veces mayor y que pueden ser tratados como un disco duro (se graban y leen por sectores). La desventaja es que sólo se pueden leer en el ordenador y que su precio es mayor que el de los DVD normales.
La barrera física de grabación se encuentra en las 16x. Un DVD de 16x gira una velocidad de alrededor de 10.000 revoluciones por minuto, que equivale a 52x en CD. Si se intentase acelerar más el disco, el material que lo compone comenzaría a agrietarse.
Unidad de DVD-ROM o "Lectora de DVD"
Las unidades de DVD-ROM son aparentemente iguales que las de CD-ROM, pueden leer tanto discos DVD-ROM como CD-ROM. Se diferencian de las unidades lectoras de CD-ROM en que el soporte empleado tiene hasta 17 GB de capacidad, y en la velocidad de lectura de los datos. La velocidad se expresa con otro número de la «x»: 12x, 16x... Pero ahora la x hace referencia a 1,32 MB/s. Así: 16x = 21,12 MB/s.
Las conexiones de una unidad de DVD-ROM son similares a las de la unidad de CD-ROM: placa base, fuente de alimentación y tarjeta de sonido. La diferencia más destacable es que las unidades lectoras de discos DVD-ROM también pueden disponer de una salida de audio digital. Gracias a esta conexión es posible leer películas en formato DVD y escuchar seis canales de audio separados si disponemos de una buena tarjeta de sonido y un juego de altavoces apropiado (subwoofer más cinco satélites).
Unidad de DVD-RW o "Grabadora de DVD"
Puede leer y grabar imágenes, sonido y datos en discos de varios gigabytes de capacidad, de una capacidad de 650 MB a 9 GB.
Unidad de discos magneto-ópticos
La Unidad de Discos magneto-ópticos permiten el proceso de lectura y escritura de dichos discos con tecnología híbrida de los disquetes y los CD, aunque en entornos domésticos fueron menos usadas que las disqueteras y las unidades de CD-ROM, pero tienen algunas ventajas en cuanto a los disquetes:
Por una parte; admiten discos de gran capacidad: 230 MB, 640 Mb o 1,3 GB.
Además; son discos reescribibles, por lo que es interesante emplearlos, por ejemplo, para realizar copias de seguridad.










Mantenimiento y reparacion de un equipo de computo CBTis Nº 240







Es lo principal que el computador usa para almacenar y accesar y administrar informacion. Es una convinacion mecanica y electronica, una computadora no funciona sin una hd.
Para la lectura, al guardar o almacenar los datos o informacion, se parece a un tocadisco.
Si ya se encuentra grabada la informacion en los sectores multiples a esta funcion se le llama escribir.
Los discos duros de hoy, con capacidad de almacenar multigigabytes mantienen el mínimo principio de una cabeza de Lectura/Escritura suspendida sobre una superficie magnética que gira velozmente con precisión microscópica.
Pero hay un aspecto de los discos duros que probablemente permanecerá igual. A diferencia de otros componentes de la PC que obedecen a los comandos del software, el disco duro hace ruidos cuando emprende su trabajo. Estos ruidos son recordatorio de que es uno de los pocos componentes de una PC que tiene carácter mecánico y electrónico al mismo tiempo
Los discos duros pertenecen a la llamada memoria secundaria o almacenamiento secundario. Al disco duro se le conoce con gran cantidad de denominaciones como disco duro, rígido (frente a los discos flexibles o por su fabricación a base de una capa rígida de aluminio), fijo (por su situación en el ordenador de manera permanente). Estas denominaciones aunque son las habituales no son exactas ya que existen discos de iguales prestaciones pero son flexibles, o bien removibles o transportables, u otras marcas diferentes fabricantes de cabezas.
Las capacidades de los discos duros varían desde 10 Mb. hasta varios Gb. en minis y grandes ordenadores. Para conectar un disco duro a un ordenador es necesario disponer de una tarjeta controladora. La velocidad de acceso depende en gran parte de la tecnología del propio disco duro y de la tarjeta controladora asociada al disco duro.
Estos están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central sobre el que se mueven. Para leer y escribir datos en estos platos se usan las cabezas de lectura/escritura que mediante un proceso electromagnético codifican / decodifican la información que han de leer o escribir. La cabeza de lectura/escritura en un disco duro está muy cerca de la superficie, de forma que casi vuela sobre ella, sobre el colchón de aire formado por su propio movimiento. Debido a esto, están cerrados herméticamente, porque cualquier partícula de polvo puede dañarlos.



Unidad de disco duro:

Los discos duros se presentan recubiertos de una capa magnética delgada, habitualmente de óxido de hierro, y se dividen en unos círculos concéntricos cilindros (coincidentes con las pistas de los disquetes), que empiezan en la parte exterior del disco (primer cilindro) y terminan en la parte interior (último). Asimismo estos cilindros se dividen en sectores, cuyo número esta determinado por el tipo de disco y su formato, siendo todos ellos de un tamaño fijo en cualquier disco. Cilindros como sectores se identifican con una serie de números que se les asignan, empezando por el 1, pues el numero 0 de cada cilindro se reserva para propósitos de identificación mas que para almacenamiento de datos. Estos, escritos/leídos en el disco, deben ajustarse al tamaño fijado del almacenamiento de los sectores. Habitualmente, los sistemas de disco duro contienen más de una unidad en su interior, por lo que el número de caras puede ser más de 2. Estas se identifican con un número, siendo el 0 para la primera. En general su organización es igual a los disquetes. La capacidad del disco resulta de multiplicar el número de caras por el de pistas por cara y por el de sectores por pista, al total por el número de bytes por sector.
Para escribir, la cabeza se sitúa sobre la celda a grabar y se hace pasar por ella un pulso de corriente, lo cual crea un campo magnético en la superficie. Dependiendo del sentido de la corriente, así será la polaridad de la celda. Ara leer, se mide la corriente inducida por el campo magnético de la celda. Es decir que al pasar sobre una zona detectará un campo magnético que según se encuentre magnetizada en un sentido u otro, indicará si en esa posición hay almacenado un 0 o un 1. En el caso de la escritura el proceso es el inverso, la cabeza recibe una corriente que provoca un campo magnético, el cual pone la posición sobre la que se encuentre la cabeza en 0 o en 1 dependiendo del valor del campo magnético provocado por dicha corriente.
Las cabezas de lectura y grabacion del had... **sectores multiples**
La superficie del disco almacena informaciony las cabezas de lectura las lee
y los sectores multiples a esta funcion se le llama escribir, así tambien puede almacenar informacion magneticamente.
Si creamos un documento y lo abrimos desde nuestro monitor y si solo graba a esto se le llama escribir.
Este proceso no se visualiza a simple vista.
PASO A PASO PARA DEFINIR ALGÚN DOCUMENTO O ARCHIVO.
1.- ABRIMOS UN DOCUMENTO
AL ESTAR LEYENDO EL DISCO DURO SE TIENE QUE ELIGIR UN LAPSO,EL HD TIENE UN MOVIMIENTO UNIFORME ESTE PROCESO HACE QUE TRABAJE LA MEMORIA CACHÉ.
TRANSFERENCIA DE DATOS.
ENVIA LA SEÑAL BINARIA POR LA INTERFAS A ETO SE LE LLAMA PASO DE TRANSFERENCIA EXTERNA.
INTERFASE:CONJUNTO DE CABLES QUE PUEDE CONECTAR 2 COMPUTADORES.
EL REAMPLIFICADOR: ESTE EJERCE SU FUNCION DE ACELERAR EL PASO DE LOS CABEZALES. EN POCAS PALABRAS MAYOR VELOCIDAD.
LAS PISTAS SON LEIDAS POR ESTE BRASO QUE EN LA PUNTA TIENE EL CABEZAL, EL CABEZAL LEE LAS PISTAS Y TAMBIEN ESCRIBE ESTO ES MAGNETICAMENTE.
TARJETA DE CIRCUITOS:
A ESTA TEJETA LE LLEGA INFORMACION DEL CONTROLADOR DEL HD, TRANSFIERE ESA INFORMACION PARA QUE EL CABEZAL ESCRIBA Y LEA EN EL HD.

Los componentes físicos de una unidad de disco duro son:
LOS DISCOS (Platters)

Están elaborados de compuestos de vidrio, cerámica o aluminio finalmente pulidos y revestidos por ambos lados con una capa muy delgada de una aleación metálica. Los discos están unidos a un eje y un motor que los hace guiar a una velocidad constante entre las 3600 y 7200 RPM. Convencionalmente los discos duros están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central. Estos discos normalmente tienen dos caras que pueden usarse para el almacenamiento de datos, si bien suele reservarse una para almacenar información de control.

Están ensambladas en pila y son las responsables de la lectura y la escritura de los datos en los discos. La mayoría de los discos duros incluyen una cabeza Lectura/Escritura a cada lado del disco, sin embargo algunos discos de alto desempeño tienen dos o más cabezas sobre cada superficie, de manera que cada cabeza atiende la mitad del disco reduciendo la distancia del desplazamiento radial. Las cabezas de Lectura/Escritura no tocan el disco cuando esta esta girando a toda velocidad; por el contrario, flotan sobre una capa de aire extremadamente delgada (10 millonésima de pulgada). Esto reduce el desgaste en la superficie del disco durante la operación normal, cualquier polvo o impureza en el aire puede dañar suavemente las cabezas o el medio. Su funcionamiento consiste en una bobina de hilo que se acciona según el campo magnético que detecte sobre el soporte magnético, produciendo una pequeña corriente que es detectada y amplificada por la electrónica de la unidad de disco.

Es la parte del disco duro que actúa como soporte, sobre el cual están montados y giran los platos del disco.

"ACTUADOR" (actuator)

Es un motor que mueve la estructura que contiene las cabezas de lectura entre el centro y el borde externo de los discos. Un "actuador" usa la fuerza de un electromagneto empujado contra magnetos fijos para mover las cabezas a través del disco. La controladora manda más corriente a través del electromagneto para mover las cabezas cerca del borde del disco. En caso de una perdida de poder, un resorte mueve la cabeza nuevamente hacia el centro del disco sobre una zona donde no se guardan datos. Dado que todas las cabezas están unidas al mismo "rotor" ellas se mueven al unísono. Mientras que lógicamente la capacidad de un disco duro puede ser medida según los siguientes parámetros:
Cilindros (cylinders)

El par de pistas en lados opuestos del disco se llama cilindro. Si el HD contiene múltiples discos (sean n), un cilindro incluye todos los pares de pistas directamente uno encima de otra (2n pistas). Los HD normalmente tienen una cabeza a cada lado del disco. Dado que las cabezas de Lectura/Escritura están alineadas unas con otras, la controladora puede escribir en todas las pistas del cilindro sin mover el rotor. Como resultado los HD de múltiples discos se desempeñan levemente más rápido que los HD de un solo disco.

Pistas (tracks)

Un disco está dividido en delgados círculos concéntricos llamados pistas. Las cabezas se mueven entre la pista más externa ó pista cero a la mas interna. Es la trayectoria circular trazada a través de la superficie circular del plato de un disco por la cabeza de lectura / escritura. Cada pista está formada por uno o más Cluster.

Sectores (sectors)

Un byte es la unidad útil más pequeña en términos de memoria. Los HD almacenan los datos en pedazos gruesos llamados sectores. La mayoría de los HD usan sectores de 512 bytes. La controladora del H D determina el tamaño de un sector en el momento en que el disco es formateado. Algunos modelos de HD le permiten especificar el tamaño de un sector. Cada pista del disco esta dividida en 1 ó 2 sectores dado que las pistas exteriores son más grandes que las interiores, las exteriores contienen más sectores.
MEDIDAS QUE DESCRIBEN EL DESEMPEÑO DE UN HD

Los fabricantes de HD miden la velocidad en términos de tiempo de acceso, tiempo de búsqueda, latencia y transferencia. Estas medidas también aparecen en las advertencias, comparaciones y en las especificaciones. Tiempo de acceso (access time) Termino frecuentemente usado en discusiones de desempeño, es el intervalo de tiempo entre el momento en que un drive recibe un requerimiento por datos, y el momento en que un drive empieza a despachar el dato. El tiempo de acceso de un HD es una combinación de tres factores:

1- Tiempo de Búsqueda (seek time)

Es el tiempo que le toma a las cabezas de Lectura/Escritura moverse desde su posición actual hasta la pista donde esta localizada la información deseada. Como la pista deseada puede estar localizada en el otro lado del disco o en una pista adyacente, el tiempo de búsqueda variara en cada búsqueda. En la actualidad, el tiempo promedio de búsqueda para cualquier búsqueda arbitraria es igual al tiempo requerido para mirar a través de la tercera parte de las pistas. Los HD de la actualidad tienen tiempos de búsqueda pista a pista tan cortos como 2 milisegundos y tiempos promedios de búsqueda menores a 10 milisegundos y tiempo máximo de búsqueda (viaje completo entre la pista más interna y la más externa) cercano a 15 milisegundos.

2- Latencia (latency)

Cada pista en un HD contiene múltiples sectores una vez que la cabeza de Lectura/Escritura encuentra la pista correcta, las cabezas permanecen en el lugar e inactivas hasta que el sector pasa por debajo de ellas. Este tiempo de espera se llama latencia. La latencia promedio es igual al tiempo que le toma al disco hacer media revolución y es igual en aquellos drivers que giran a la misma velocidad. Algunos de los modelos más rápidos de la actualidad tienen discos que giran a 10000 RPM o más reduciendo la latencia.

3- Command Overhead

Tiempo que le toma a la controladora procesar un requerimiento de datos. Este incluye determinar la localización física del dato en el disco correcto, direccionar al "actuador" para mover el rotor a la pista correcta, leer el dato, redireccionarlo al computador.
Transferencia
Los HD también son evaluados por su transferencia, la cual generalmente se refiere al tiempo en la cual los datos pueden ser leídos o escritos en el drive, el cual es afectado por la velocidad de los discos, la densidad de los bits de datos y el tiempo de acceso. La mayoría de los HD actuales incluyen una cantidad pequeña de RAM que es usada como cache o almacenamiento temporal. Dado que los computadores y los HD se comunican por un bus de Entrada/Salida, el tiempo de transferencia actual entre ellos esta limitado por el máximo tiempo de transferencia del bus, el cual en la mayoría de los casos es mucho más lento que el tiempo de transferencia del drive.




COMO FUNCIONA UN DISCO DURO.

1. Una caja metálica hermética protege los componentes internos de las partículas de polvo; que podrían obstruir la estrecha separación entre las cabezas de lectura/escritura y los discos, además de provocar el fallo de la unidad a causa de la apertura de un surco en el revestimiento magnético de un disco.
2. En la parte inferior de la unidad, una placa de circuito impreso, conocida también como placa lógica, recibe comandos del controlador de la unidad, que a su vez es controlado por el sistema operativo. La placa lógica convierte estos comandos en fluctuaciones de tensión que obligan al actuador de las cabezas a mover estas a lo largo de las superficies de los discos. La placa también se asegura de que el eje giratorio que mueve los discos de vueltas a una velocidad constante y de que la placa le indique a las cabezas de la unidad en que momento deben leer y escribir en el disco. En un disco IDE (Electrónica de Unidades Integradas), el controlador de disco forma parte de la placa lógica.
TARJETA DE CIRCUITO ELECTRICA: A esta tarjeta llega información del controlador del disco duro transfiere esa información para que el cabezal lea escriba un hd.
3. Un eje giratorio o rotor conectado a un motor eléctrico hacen que los discos revestidos magnéticamente giren a varios miles de vueltas por minuto. El número de discos y la composición del material magnético que lo s recubre determinan la capacidad de la unidad. Generalmente los discos actuales están recubiertos de una aleación de aproximadamente la trimillonésima parte del grosor de una pulgada.
4. Un actuador de las cabezas empuja y tira del grupo de brazos de las cabezas de lectura/escritura a lo largo de las superficies de los platos con suma precisión. Alinea las cabezas con las pistas que forman círculos concéntricos sobre la superficie de los discos.
5. Las cabezas de lectura/escritura unidas a los extremos de los brazos móviles se deslizan a la vez a lo largo de las superficies de los discos giratorios del HD. Las cabezas escriben en los discos los datos procedentes del controlador de disco alineando las partículas magnéticas sobre las superficies de los discos; las cabezas leen los datos mediante la detección de las polaridades de las partículas ya alineadas.
6. Cuando el usuario o su software le indican al sistema operativo que lea o escriba un archivo, el sistema operativo ordena al controlador del HD que mueva las cabezas de lectura y escritura a la tabla de asignación de archivos de la unidad, o FAT en DOS (VFAT en Windows 95). El sistema operativo lee la FAT para determinar en que Cluster del disco comienza un archivo preexistente, o que zonas del disco están disponibles para albergar un nuevo archivo.
7. Un único archivo puede diseminarse entre cientos de Cluster independientes dispersos a lo largo de varios discos. El sistema operativo almacena el comienzo de un archivo en los primeros Cluster que encuentra enumerados como libres en la FAT. Esta mantiene un registro encadenado de los Cluster utilizados por un archivo y cada enlace de la cadena conduce al siguiente Cluster que contiene otra parte más del archivo. Una vez que los datos de la FAT han pasado de nuevo al sistema operativo a través del sistema electrónico de la unidad y del controlador del HD, el sistema operativo da instrucciones a la unidad para que omita la operación de las cabezas de lectura/escritura a lo largo de la superficie de los discos, leyendo o escribiendo los Cluster sobre los discos que giran después de las cabezas. Después de escribir un nuevo archivo en el disco, el sistema operativo vuelve a enviar las cabezas de lectura/escritura a la FAT, donde elabora una lista de todos los Cluster del archivo.
Métodos de Grabación MFM y RLL
Una cabeza (bobina) mientras graba magnetiza en la pista grupos de pequeñas partículas microscópicas de óxido de hierro (no una sola), dando lugar a pequeños imanes que originan campos magnéticos en la superficie del disco, cuya polarización (S-N o N-S) depende del sentido de la corriente de la bobina.
Cuando la misma cabeza debe leer, sensa dichos campos, detectando campos magnéticos existentes debidos a imanes enfrentados (norte contra norte, sur contra sur). Vale decir, no detecta si existe o no campo magnético, sino inversiones en el flujo (campo) magnético, cuando se enfrentan dos polos iguales. En una lectura, al pasar la cabeza por cada una de estas inversiones, se genera en la bobina una corriente eléctrica que da lugar a una señal constituida por un breve pulso eléctrico. Los pulsos así generados, al ser decodificados por la electrónica correspondiente, permiten reconstruir la señal que excitó la bobina de la cabeza durante la escritura de la pista, y así decodificar los ceros y unos en el sector leído.
El número máximo de inversiones sucesivas de flujo magnético por centímetro o pulgada cuadrada debe permitir escrituras o lecturas seguras. Está limitado por las características del material magnético, por el ancho del entrehierro, y la sensibilidad de la cabeza.
Para un número máximo dado de tales inversiones, de lo que se trata, en principio, es codificar la mayor cantidad de unos y ceros por centímetro de pista, habiéndose desarrollado para tal fin varios métodos, que implicaron sucesivas mejoras en la densidad de almacenamiento. En todos ellos en una escritura, cada cambio de nivel de la señal eléctrica que se aplica a una cabeza, produce una inversión en el flujo magnético de la superficie de la pista que está siendo escrita. Por lo tanto, se busca codificar la mayor cantidad de unos y ceros con el menor número de cambios de nivel en dicha señal.
Los tres métodos de codificación tienen en común:
Los unos y ceros a grabar están separados igual intervalo de tiempo entre sí;
Cada bit de valor uno a escribir le corresponde siempre en la pista una inversión del campo magnético; mientras que en correspondencia con cada cero a escribir, no existe ninguna inversión de campo. Pero esta convención sin más no permite en la lectura detectar cuántos ceros sucesivos han sido grabados.
Una codificación emplea inversiones de flujo extras para separar bits, y otra las usa sólo para separar ceros. Estas inversiones usadas para demarcar bits -que en correspondencia requieren cambios de nivel en las señales eléctricas que se aplican a una cabeza- se denominan "clocks", en el sentido que sirven para autosincronismo, a fin de poder determinar tiempos de duración de bits.
En la grabación de disquetes se usa principalmente el método de codificación conocido como MFM (Modulación de Frecuencia Modificada). En los rígidos la técnica anterior se ha reemplazado por otra conocida como RLL ("Run Lenght Limited", traducible como "longitud limitada de ceros corridos" o sea sucesivos), que permite hasta un 50% más de densidad de grabación. Ambas codificaciones son mejoras sucesivas del denominado método de grabación FM ("Frecuencia Modulada").
En la grabación FM se emplea siempre una inversión de flujo antes de cada bit a escribir, sea uno o cero; y además se debe emplear otra inversión por cada bit de valor uno a escribir, inversión que se da a mitad de camino entre la inversión que indica su comienzo y la del comienzo del bit siguiente. 0 sea, que para escribir un uno se requiere dos cambios de nivel en la señal que recibe la cabeza: un cambio para indicar que empieza un bit, y otro para señalar que se trata de un uno.
A diferencia, la escritura de un cero implica sólo un cambio de nivel, para indicar el comienzo de dicho bit, siendo que la ausencia de otro cambio inmediatamente después identifica que se trata de un cero.La denominación FM se debe a que en la codificación de unos sucesivos, resulta una frecuencia de pulsos mayor que la existente para ceros sucesivos, o sea que existen dos frecuencias distintas para unos y ceros.
Dado que en la codificación FM, para grabar un uno se necesita dos inversiones de campo magnético en la pista, fue reemplazada por la MFM, que permite codificar un wio con una sola inversión de campo, siendo que sólo usa inversión para indicación de comienzo de bit, cuando un cero está precedido por otro cero.
Esta convención permite codificar, como se ejemplifica, la misma secuencia de unos y ceros como la ejemplificada (11111010000) con la mitad de inversiones de flujo que con FM. Por lo tanto en MFM se puede duplicar el número de bits por pulgada de pista, para una cantidad máxima de inversiones posibles por pulgada (que depende del material magnético usado).
Para los discos rígidos de gran capacidad fue necesario aumentar la densidad de grabación, para lo cual se creó la codificación RLL 2,7 que permite con un menor número de inversiones de flujo codificar una mayor cantidad de bits (hasta 50% más que con MFM). A tal fin, una sucesión de bits a escribir se descompone, a partir del primero, en sucesivos grupos de bits cuya.
Esta recodificación el número de unos a grabar, y por ende, inversiones de flujo, siendo que en MFM también se necesitan inversiones cuando hay ceros consecutivos (en RLL sólo se usan para los unos). En este ejemplo, los datos a escribir 11111010000 se descomponen en los grupos 11 11 10 10 000 codificados, como 100010000100010000010O. En RLL sólo se produce una inversión de flujo si hay un uno, sin emplear inversiones de comienzo de bit para los ceros en ninguna circunstancia.
La lectura de una pista exige una electrónica sofisticada, como la IDE o SCSI, para determinar correctamente, en función del tiempo transcurrido, cuántos ceros existen entre la detección de dos "unos".

MANTENIMIENTO Y ENSAMBLE DE UN EQUIPO DE COMPUTO CBTis Nº 240







UNIDADES DE DISQUETE O FLOPPY

El disquete es un disco removible magnético utilizado para almacenar datos.
Los tipos de disquetes más comunes son los siguientes:
TAMAÑO
CAPACIDAD
EXPLICACIÓN
5.25
180 KB
Una cara, doble densidad
5.25
360 KB
Dos caras, doble densidad
5.25
1.2 Mb
Dos caras, alta densidad
3.5
720 Kb
Dos caras, doble densidad
3.5
1.4 Mb
Dos caras, alta densidad
Las disqueteras son compatibles con discos anteriores, siempre y cuando sean del mismo tamaño; es decir, que en una disquetera de 3,5" de alta densidad (de 1,44 MB) podemos usar discos de 720 Kb o de 1,44 MB, pero en una de doble densidad, más antigua, sólo podremos usar los de 720 Kb.
Para distinguir a primera vista un disco de 3,5" de alta densidad de otro de doble, basta con observar el número de agujeros que presenta en su parte inferior. Si tiene sólo uno, situado en el lado izquierdo (mirando el disquete con la etiqueta hacia delante) y generalmente provisto de una pestaña móvil, se trata de un disco de doble densidad; si tiene dos agujeros, se trata de un disco de alta densidad. Si el primero de los agujeros está al descubierto el disco está protegido contra escritura, por lo que no podremos escribir datos ni modificar los existentes.
De cualquier forma, el disquete deberá estar formateado a la capacidad correcta, para lo cual podemos usar la orden FORMAT del DOS, la orden mkfs.ext2 dev/fd0 en Linux modo consola o mediante los menús gráficos de Linux o Windows. Los disquetes son dispositivos muy poco fiables en cuanto al almacenaje a largo plazo de la información. Son muy delicados y les afecta los cambios bruscos de temperatura, los campos magnéticos, la humedad, los golpes, el polvo...
Aunque su capacidad es totalmente insuficiente para las necesidades actuales, los fabricantes de PCs siguen incorporándola en sus equipos aunque cada vez sea menor el número de usuarios que la utilizan, ya que montar una disquetera no resulta demasiado caro. Además, siempre sirve para instalar algún controlador antiguo o para recuperar el sistema a través de los discos de arranque.


Un floppy disk, usa el mismo material que un casette, sin embargo está formado como un disco vinilo, más que una larga cinta conteniendo información. Las pistas está preparadas en anillos concéntricos, por lo que el software puede saltar del “fichero 1” al “fichero 12” sin tener que pasar por los ficheros del 2 al 11. El disco gira como un disco vinilo, y las cabeceras se dirigen a la pista correcta, proveyendo lo que se llama almacenamiento de acceso directo.

Con capacidad baja de almacenamiento: El Drive Floppy; puedes guardar 1.4 Megabytes (MB) de información, de uno a 10 documentos pequeños, aproximadamente.

Partes de la disquetera

Las partes más importantes de un disquete son las siguientes:
Cabeceras de lectura/escritura: Están localizados en ambos lados del disquete, y se mueven a la vez. como su nombre lo indica lee y escribe.
Motor: Se trata de una pequeña pieza metálica en el centro del disco, que gira a 300 o 360 rotaciones por minuto (RPM)


Motor de secuencia: Este dispositivo realiza un preciso número de secuencias en las revoluciones para mover las cabeceras a la posición correcta de la pista. Este su funcion es de tiempo su nombre lo indica secuencia de revoluciones es decir un determinado tiempo.


Dispositivo mecánico: Es un sistema de piezas que abre la pequeña ventana del disquete para permitir que las cabeceras de lectura/escritura puedan tocar la parte grabable del disquete.


Panel de circuitos: Contiene todos los elementos electrónicos para manejar los datos del disquete. Controla también los motores encargados de lee las cabeceras, su función es llenar del controlador del disquete transfiere es informacion a las cabeceras de lectura/escritura en el disquete.

Las cabeceras de lectura/escritura no tocan el disquete cuando se desplazan entre pistas. Los dispositivos electrónicos ópticos, verifican si en la esquina del disquete de 3.5 pulgadas está accionada la protección contra grabaciones accidentales. Es una pestaña que podemos cambiar de posición para proteger nuestros datos.


Funciones que Cumple una Unidad de Disquetes ("Floppy Disk Drive")

Anteriormente se hizo mención al posicionamiento de las cabezas sobre el cilindro al cual se quiere acceder cuando el disquete está girando, y a las corrientes eléctricas que circulan en la cabeza que está escribiendo o leyendo, etc.
Estas acciones básicas de la "unidad de disquete" o "disquetera" ("drive" A 0 B) sirven a su objetivo de escribir o leer una pequeña superficie (sector) del disquete inserto en este periférico. Para tales acciones la disquetera presenta en esencia:
Mecanismos de sujección y eyección del sobre protector (con el botón frontal), y para desplazar la ventana de protección.
Motor para girar el disco.
Otro motor "paso a paso"', para hacer avanzar de pista en pista (de un cilindro al siguiente), a la armadura que porta las dos cabezas (ampliada más en detalle y abierta a la derecha de la figura 2.21). Las cabezas así se mueven en movimiento radial rectilíneo -hacia delante o atrás- hasta el cilindro seleccionado.
Sensores para detectar presencia de disquete, y si está protegido contra escritura en su cubierta.
Bus de conexión a su interfaz, conocida como "controladora".
Circuitos que constituyen la electrónica de este periférico, para accionar los elementos anteriores, conforme a las señales eléctricas que recibe de la controladora (interfaz) de las disqueteras (A y B), a través de conductores del bus de conexionado citado.
Capac. Almac.= Nro. pistas x Nro. de sectores x Nro. de caras x Nro. de bytes/sector
Las señales que llegan a la disquetera desde la interfaz ordenan, entre otras acciones:
Poner en marcha el motor de giro de la unidad seleccionada (sea la A ó B).
Posicionar (mediante el motor paso a paso) la armadura en un determinado cilindro del disquete.
Seleccionar cuál de las dos cabezas se activará.
A su vez por cables de dicho bus de conexión, la electrónica puede enviar hacia la interfaz señales, como:
Aviso de inicio de pista (cuando el agujero correspondiente del disquete coincide con el del sobre).
Aviso de escritura protegida.
Aviso que datos leídos son enviados a la interfaz.

Como resultado de estas señales, si todo está en orden, puede tener lugar la transferencia serie de bits leídos en un sector de un disquete hacia la interfaz (o en sentido contrario en una escritura de un sector) a través de uno de los cables del bus de conexionado citado.

Al introducir un disquete suavemente con la etiqueta hacia arriba. Las mayoría de las unidades hace un sonido de un clic cuando ha entrado correctamente una luz se enciende cuando la computadora esta utilizando el disquete no lo remueva cuando esta encendida.
para remover el disquete,presione el botón.